Newsletter Signup x

Finding out why some children get rare cancers of the blood

At the moment, we don’t know the cause of the blood cancers myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML) in many children. But in some rare cases of MDS/AML more than one family member is affected. These family sets give us valuable data in the search to identify the genetic factors in these diseases. In this project, Dr Tom is working with 26 such families to characterise these genetic mutations.

Rare blood cancers affecting more than one family member could help us discover what’s at the root of the genetic mutations causing them. This project is studying 26 affected families to help us learn more.

Project Progress...

Tom Vulliamy in a laboratory

Project Details

  • Project Title

    Identification and characterisation of mutations that predispose to myelodysplastic syndrome and acute myeloid leukaemia

  • Lead Researcher

    Dr Tom Vulliamy

  • Research Centre

    Queen Mary University of London

  • City & Institution Postcode

    London E1 2AT

  • Start Date

    1 April 2014

  • Duration

    3 years

  • Grant Amount

    £152,995

Make a regular gift today!

Your donation helps save young lives!

Read more

Find out more about childhood cancer

Information about childhood cancer
Read more

Patient Story – Ace

Meet Ace- one of our hero patient stories


28 January 2008. A day that changed my whole family’s life. My son Ace was three years and ...

Read more

Overview

Myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML) are rare, related cancers of the blood – together affecting around 90 children a year in the UK, who are unlikely to survive unless a stem cell transplant is possible. We don’t yet know why these diseases appear, and we urgently need to find out so we can explore options for treating and maybe preventing them.

Previous research has shown that these children can have several different mutated genes, so their blood doesn’t develop normally. In most children, these mutations happen as part of the disease process. However, there are some rare examples MDS/AML, where multiple members of the same family have the disease, and these families are helping us to undertake crucial research to identify the genetic events that lead to the disease.

What difference will this project make?

This project aims to begin to address the significant need for new treatment approaches in MDS and AML. DNA sequencing technology now makes it possible to identify the crucial genetic mutations that cause these diseases.

Dr Tom’s research team is in contact with 26 families with more than one family member affected by MDS or AML. In 10 of them they’ve already identified mutations in four different genes.

By examining the genetic characteristics of the remaining 16 families; the team will search for genes that are mutated recurrently in the affected families but only very rarely in the normal population.

They’ll follow-up on any such gene in two ways. Firstly, they’ll look to see if the same gene is mutated in a larger group of sporadic MDS/AML patients. Secondly, they’ll look into the functional consequences of the mutations in these genes.

Not only will this work give an important insight to the underlying pathology of these two diseases, but improved classification should help to improve treatments.

Ultimately, as well as helping to improve treatments for children diagnosed with these cancers, knowing more about why inherited diseases like these occur will enable doctors to test members of families with the affected genes before symptoms appear.

 

About the Research Team

Dr Tom Vulliamy is a Senior Lecturer in Molecular Biology at the Blizard Institute’s Centre for Paediatrics. The main focus of his research is to identify disease genes that cause bone marrow failure.

Dr Tom is working with Professor Inderjeet Dokal, Chair of Child Health and Honorary Consultant in Haematology at Barts and the London School of Medicine and Dentistry.

They have an excellent track record in the genetic characterisation of blood disorders and have published in major journals over a period of over 15 years. They are in a unique position to carry out this work thanks to their contact with the rare families affected by these blood cancers.

Newsletter icon

Know someone who might be interested in this article?

Email this page to a friend!

Understanding the role genetic mutations play in acute myeloid leukaemia

Related research - Dr Beth Payne

The second most common form of childhood leukaemia is known as AML, and a large number of genetic ...

Read more

Exploring uncharted DNA to help find the causes of childhood leukaemia

Related research - Professor Christine Harrison

There’s still about 10 per cent of the human genome (our complete set of DNA) that we know ...

Read more

Children's Fundraising

Children's fundraising

We have an exciting fundraising challenge designed specifically for children. The challenge is ideal for school classes, Brownies, Cubs, ...

Read more