Newsletter Signup x

Studying stem cells in paediatric glioblastomas in search of new treatments

Professor Leach and his team are researching the cancer stem cells in paediatric glioblastoma. This brain tumour tends to resist treatment, and we need to find out why, so that life-saving new treatments can be developed to fight this extremely hard-to-treat cancer.

This project is studying cancer stem cells in paediatric gliobastomas, to help scientists look for new ways to help children affected by this treatment-resistant cancer.

Project Progess...

Professor Martin Leach and Alice Agliano

Project Details

  • Project Title

    Identifying markers of cancer stem cell derived tumour development and resistance in paediatric glioma

  • Lead Researcher

    Professor Martin Leach

  • Research Centre

    Institute of Cancer Research

  • City & Institution Postcode

    London SM2 5NG

  • Start Date

    1 November 2015

  • Duration

    3 years

  • Grant Amount

    £235,854

Our brain tumour initiative

Brain Tumour Campaign

Thank you to everyone who contacted their MPs and asked them to attend the April 2016 debate on ...

Read more
Information about brain tumours

Brain and Spinal Tumours

Every year, there are around 400 new cases of cancer of the spine or brain, these include: medulloblastoma, ...

Read more
Meet Charlie - one of our hero patient stories

Patient Story - Charlie


My name is Beverley and my son Charlie had a brain tumour when he was five years ...

Read more

Overview

Paediatric glioblastoma (pGBM) is an aggressive brain tumour that fewer than one in five young patients survive. Although we’ve learned a lot about it, it remains one of the few childhood cancers where survival rates haven’t improved over the last 30 years.

Scientists think this could be because of a small population of cancer cells called cancer stem cells (CSCs). These cells have been recognised as a potential cause of tumour growth, cell production, drug resistance and metastasis.

Research in this field has had little success to date, partly because these CSCs keep changing, making them difficult to detect and characterise. Learning more about specific features of CSCs would enable scientists to design treatments to target them.

Because of their location in the brain, we can’t get samples of pGBMs to biopsy, so the only way to detect and characterise tumour regrowth and treatment resistance at an early stage is by imaging. Professor Martin and his team will be using advanced imaging techniques to study pGBMs.

What difference will this project make?

Research into childhood brain tumours is highly challenging and, although we’ve discovered much about the biology of GBM in adults, we don’t know enough about GBM in children to develop new, more effective treatment strategies.

Understanding of the role and characterisation of CSCs is vital to enable scientists to develop new therapies that directly target these cells and find treatments that will beat them.

Specialist imaging techniques such as magnetic resonance spectroscopy (MRS) and positron emission tomography (PET) scanning are powerful tools used to assess the metabolism of cancer cells without taking samples through surgery – which is too dangerous. These scans helps us to characterise the disease and check how it responds to therapy.

In this project, Professor Martin and colleagues will use these non-invasive imaging techniques to characterise the differences between CSCs and the non-stem cancer cells. They aim to identify specific metabolic features of CSCs that can be used to aid the design of new therapies.

This project therefore has the potential to contribute to the development of new drugs for pGBM, essential if we are to save the lives of more children with this form of cancer.

About the Research Team

The lead investigator, Professor Martin Leach, has a great deal of experience of research developing and applying magnetic resonance techniques to identify and monitor important processes in cancer, particularly in relation to new cancer therapies.

His colleagues, Dr Chris Jones and Dr Gabriela Kramer-Marek, contribute valuable expertise in the genetics of childhood brain tumours and molecular imaging respectively.

Most of the day-to-day work on the project will be carried out by Dr Alice Agliano, who has an excellent track record in the field and extensive experience in cancer biology, metabolism and imaging technology.

The Institute of Cancer Research (ICR) provides the ideal environment for this work. At the beginning of 2015, a new £20m dedicated pre-clinical Centre for Cancer Imaging (CCI) opened at ICR, providing state-of-the-art facilities and a highly collaborative working environment for multidisciplinary teams of cancer researchers.

Newsletter icon

Know someone who might be interested in this article?

Email this page to a friend!
Related research- Professor Chris Jones

Understanding treatment-resistance and disease-spread in childhood gliomas

This project is looking paediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG), two brain tumours that affect ...

Read more
Related research- Dr Steve Pollard

Understanding the genetics of paediatric glioblastoma

International collaboration is often the best way to approach difficult research problems, and this is how we’re searching ...

Read more
Fundraise for us today!

We've got lots of amazing events to choose from!

Read more