A new treatment approach for children with diffuse intrinsic pontine glioma.

Diffuse intrinsic pontine glioma (DIPG) is a childhood brain tumour that currently kills over 90% of children diagnosed with it within 18 months of diagnosis. DIPG is currently incurable, and most children affected by it die in less than two years. But a breakthrough discovery by Professor Chris and his team has identified a gene that may be the key to a new way of treating it.

Scientists have found a genetic mutation in the tumour cells of some children with DIPG which may give us a way of tackling this disease. This vital project is giving us hope that we can find a new, life-saving treatment.

Thank you

This research project on DIPG has been successfully completed. Your donations allow us to fund ground-breaking research that can improve treatments given to children with cancer. Thank you. Your help allows us to continue to find ways to drive up the chances of survival for children with cancer and reduce the toxic side effects that can affect the rest of their lives.

Project Details

  • Project Title

    The role of ACVR1/ALK2 mutations in diffuse intrinsic pontine glioma

  • Lead Researcher

    Professor Chris Jones

  • Research Centre

    Institute of Cancer Research

  • City & Institution Postcode

    Sutton SM2 5NG

  • Start Date

    1 January 2015

  • Duration

    44 months

  • Grant Amount

    £264,117

Chris Jones - a professor working to improve spinal and brain tumour child survival rate

Overview

Diffuse intrinsic pontine glioma (DIPG) is a childhood brain cancer with no effective treatment. Currently, more than 90% of children with DIPG die within 18 months of it being diagnosed.

Professor Chris Jones and colleagues at the Institute of Cancer Research recently discovered that the tumour cells in around a quarter of DIPG patients have mutations in a gene known as ACVR1.

These mutations in ACVR1 have never been seen in any other form of cancer, but are the same as those found in every cell of the body in patients with a condition called fibrodysplasia ossificans progressiva (FOP). This is a debilitating condition where the soft tissue turns to bone during childhood.

The link between FOP and DIPG has never been reported before and highlights the important overlap between processes which control normal tissue development and those which control cancer. The hope is that ACVR1 represents a new target for developing better treatments for children with DIPG.

What difference will this project make?

We don’t have any effective treatment at the moment, and this project is the strongest hope we’ve had for a new treatment for some time.

Professor Chris and his team will investigate whether treating DIPG cells with specific drugs designed to inhibit the action of ACVR1 will also stop the cancer cells growing. They’ll test this both ‘in vitro’, (in laboratory culture dishes), and ‘in vivo’ (meaning in a living body), using mice. They’ll test a collection of DIPG cells with and without the ACVR1 mutation, and try several potential new drugs.

They’ll also use the ACVR1 mutated cells in a very large scale screening exercise to look for other ways to kill them. Finally, the team will aim to breed mice with the mutated ACVR1 gene, and study them to help them better understand how the tumours develop. This knowledge will give them better understanding of how we could go about treating them.

By the end of the study, the team hopes to have enough data to show which drugs work best. If they’ve worked well enough, this could lead to a clinical trial of new drugs for children with DIPG.

About the Research Team

Professor Chris Jones is one of the UK’s leading experts in childhood brain tumours, and specifically in DIPG. His lab has been responsible for some of the key findings underpinning the realisation that high grade gliomas (HGG) and DIPG affecting children are different diseases, not just from each other, but also from similar-looking tumours occurring in adults.

On this project, he is working with Dr Louis Chesler, also from ICR – a specialist in new drug development – and Dr Darren Hargrave, a paediatric oncologist from Great Ormond Street Hospital.

Newsletter icon
Newsletter icon

Sign up to our e-newsletter today

Sign up to our e-newsletter and receive exclusive stories straight to your inbox. You will also find out about our latest childhood cancer research news along with updates on our fundraising events, charity news and opportunities to support us. Don’t miss out!

By signing up to this newsletter I agree to receive general and financial appeal emails from Children with Cancer UK